

US Geothermal Power Production and Development Update

Geothermal Energy Assocation

Dan Jennejohn April 2010

GEOTHERMAL ENERGY ASSOCIATION

209 Pennsylvania Avenue SE, Washington, D.C. 20003 U.S.A. Phone: (202) 454-5261 Fax: (202) 454-5265 Web Site: <u>www.geo-energy.org</u>

U.S. GEOTHERMAL POWER PRODUCTION AND DEVELOPMENT UPDATE: APRIL 2010

1. Installed Capacity and Projects in Development	3
1.1 Installed Capacity Growth	3
Figure 1: April 2010 Geothermal Power Capacity On-Line (MW)	3
Figure 2: Total Installed Capacity 2005 – 2009	4
1.2 Capacity in Development	4
Figure 3: Projects in Development Totals by State	
1.3 Project in Development Summary	19
Figure 4: Total Confirmed projects 2006-2010	19
Figure 5: Developing Projects by State and Phase	
Figure 6: Developing Projects by Phase	21
2. Federal Programs and Funding of Emerging Technologies	22
2.1 DOE Geothermal Technologies Program Funding and Projects	22
Figure 7: DOE and Industry Funding under ARRA and FY 08 Appropriations	23
Figure 8: Funding and Cost Share in States Producing Geothermal Electricity	24
Figure 9: Federal Funding and Cost Share in States with Nascent Geothermal Industries	25
2.2 Federal Funding of Developing Geothermal Technologies	25
2.2.1 Enhanced Geothermal Systems Projects	26
Figure 10: EGS Demonstration Projects	
2.2.2 Innovative Exploration and Drilling Projects	26
Figure 11: Validation of Innovative Drilling Projects	27
2.2.3 Geothermal Hydrocarbon Co-production (GHCP) Projects	27
Figure 12: Geothermal Hydrocarbon Co-production and Geopressured Projects	
2.2.4 Other Federal Awardees and Technologies	
Figure 13: Other Geothermal MW in Development Receiving Funding	
2.3 Bureau of Land Management Lease Sales	30
Figure 14: Utah February 2010 BLM Lease Sale Results	
Figure 15: February 2010 BLM Geothermal Lease Sale State and Federal Revenue	
2.4 Geothermal Development on Tribal Lands	
Figure 16: Federal Funding to Tribal Lands	

Cover Photos courtesy of Enel NA, Raser Technologies, Ormat Technologies, and Geo-Heat Center/OIT.

1. Installed Capacity and Projects in Development

1.1 Installed Capacity Growth

The United States currently leads the world's countries in online geothermal energy capacity and continues to be one of the principal countries to increase its geothermal growth. In 2007 geothermal energy accounted for 4% of renewable energy-based electricity consumption in the United States.¹ As of April 2010, geothermal electric power generation is occurring in nine U.S. states: Alaska, California, Hawaii, Idaho, Nevada, New Mexico, Oregon, Utah, and Wyoming. Other states, such as Colorado, Louisiana, Mississippi, and Texas are soon to be added to the list. The United States has a total installed capacity of 3086.6 MW.

Figure 1: April 2010 Geothermal Power Capacity On-Line (MW)

Source: GEA

In 2009 geothermal developers brought seven geothermal projects online, adding approximately 176 MW of renewable energy capacity in five different states. Many of these were relatively larger scale geothermal power plants. Specifically, Enel North America completed the construction of two geothermal projects in the state of Nevada for a combined total of 65 MW. Nevada Geothermal Power, Inc. completed its Blue Mountain Faulkner 1 (50 MW) power plant in Nevada in September 2009. Ormat Technologies, Inc.'s North Brawley (50 MW) power plant in California became operational in 2009. Raser Technologies, Inc.'s Thermo No. 1 or Hatch (10 MW) power plant became operational in Utah in April 2009.

¹ U.S. DOE: Geothermal Technologies Program. <u>Geothermal Tomorrow</u> (Sep. 2008).

A number of smaller power units were installed in 2009 as well. The Oregon Institute of Technology began generating electricity with a 0.28 MW unit at its Klamath Falls campus in Oregon in 2009. Additionally, the Rocky Mountain Oil Testing Center (RMOTC) installed and operated a 0.25 MW geothermal hydrocarbon co-production (GHCP) unit at its facilities near Casper, Wyoming in 2009. The addition of these projects to US national geothermal capacity in 2009 is the continuation of a growth trend that the industry has been undergoing since 2005.

Source: GEA

While levels of installed capacity may fluctuate on an annual basis, geothermal developers in the US continue to develop geothermal resources at an increasing rate. Concerns over climate change, energy security, as well as the recognition of geothermal energy's value as a clean, renewable, base load energy source, drive the increased development of US geothermal resources.

1.2 Capacity in Development

The following results identify up to 7057.26 MW of new geothermal power plant capacity under development in the United States (this includes projects in the initial development phase).* Unconfirmed projects, some of which might be developed in the next few years, increase the potential capacity to 7875.16 MW. There are 15 states with projects currently under consideration or development: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Mississippi, Nevada, New Mexico, Oregon, Texas, Utah, Washington, and Wyoming. Between confirmed and unconfirmed projects there are a total of 188 developing projects.

The projects listed for each state are categorized by the following phases:

- Phase I: Identifying resource, secured rights to resource, pre-drilling exploration
- Phase II: Exploration and/or drilling permits approved, exploration drilling conducted/in progress
- Phase III: Securing PPA and final permits, full size wells drilled, financing secured for portion of project construction
- Phase IV: plant permit approved, facility in construction, production and injection drilling underway
- Unconfirmed: Project information obtained by GEA from publicly available sources but not verified by the project developer

*Only projects in Phase 1 through Phase 4 are included in the 7057.26 MW of capacity under development.

Please Note: GEA is reporting project information that is provided by developers or public sources. We do not independently verify the data provided or warrant its accuracy.

Alaska

Installed Capacity: 0.73 MW In Development: 80 MW

The first geothermal power plant in Alaska was installed in 2006 at Chena Hot Springs. It is a small-scale unit, using organic rankine cycle (ORC) technology to produce 225 kW from a low-temperature resource (165°F). Subsequent 225 and 280 kW units have been installed, bringing total capacity to 730 kW.

Currently, seven different geothermal companies, resorts, utilities, and Native American organizations are developing 80 MW of geothermal resources in Alaska for potential electricity production. Additionally, the SW Alaska Regional Geothermal Energy and Pilgrim Hot Springs projects received funding awards from the Department of Energy via the American Recovery and Reinvestment Act of 2009 (ARRA). For more details on these awards see section 2.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 1				
	Akutan Geothermal Project	City of Akutan	10	
	Unalaska	City of Unalaska	10	
	Mount Spurr	Ormat	TBD	
Phase 2				
	Chena Hot Springs II*	Chena Hot Springs	5	

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
	Pilgrim Hot Springs	Unaatuq LLC	10	ARRA Recipient
Unconfirmed				
	Tongass*	Bell Island Hot Springs	20	
	SW Alaska Reg. Geo. Energy Project	Naknek Electric Assoc.	25	ARRA Recipient

*Received GRED III funding for Phase I and II of project

Arizona

Installed Capacity: 0 MW

In Development: 2 – 20 MW

Arizona currently has one geothermal development project which remains in an unconfirmed phase of development. Additionally, the Arizona State Geological Survey (AZGS) received \$15.8M dollars of ARRA funding to assist in the collection of state geological surveys into the National Geothermal Data System. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding	
Unconfirmed					
	Clifton		2-20		

California Installed Capacity: 2565.5 MW In Development: 1609.7 – 1997.7 MW

U.S. geothermal capacity remains concentrated in California. In 2005, California's geothermal capacity exceeded that of every country in the world. In 2007, 4.5 % of California's electric energy generation came from geothermal power plants, amounting to a net-total of 13,439 GWh. California currently has approximately 2565.5 MW of installed capacity.²

Geothermal developers continue to actively develop the states' geothermal resources. The following table identifies 35 projects currently in development. Additionally, DOE awarded \$47.4M to 22 projects in California via ARRA and FY 08 appropriations. Of these, two projects have been identified as being in development in the following table. For more information on DOE funding of geothermal projects and technologies see section 6 of this report.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 1				
	Unnamed Glass Mountain	Calpine	320	
	Unnamed North Geysers	Calpine	100	
	Surprise Valley	Enel NA	20	
	NAWS China Lake So Range	Navy Geothermal Program	5-15	
	MCAS Yuma Chocolate Mountains	Navy Geothermal Program	12-30	
	NAF El Centro/Superstition Hills	Navy Geothermal Program	5-25	
	Orita 3	Ram Power	40-100	
	New River	Ram Power	40-50	ARRA Recipient
	Mesquite Lake	Ram Power	49.9	
Phase 2		·		- -
	Fourmile Hill-Glass Mountain	Calpine	50	
	Telephone Flat-Glass Mountain	Calpine	50	
	NAF El Centro/Superstition Mts.	Navy Geothermal Program	12-35	
	Marine Corps, Twenty-nine Palms	Navy Geothermal Program	5-12	
	Mammoth Phase II	Ormat	25	
	Wister	Ormat	30	ARRA Recipient
	Project CA	Oski Energy	TBD	
	KS	Oski Energy	75-100	
	HV	Oski Energy	75-100	

² California Energy Commission: <u>http://www.energy.ca.gov/</u>

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
	KN	Oski Energy	75-100	
	Orita 2	Ram Power	40-100	
Phase 3				
	Buckeye-North Geysers	Calpine	30	
	Wildhorse-North Geysers	Calpine	30-50	
	East Brawley	Ormat	30	
	Orita 1	Ram Power	40-100	
	Black Rock 1	CalEnergy	53	
	Black Rock 2	CalEnergy	53	
	Black Rock 3	CalEnergy	53	
Phase 4				
	Geysers Field	Ram Power	35	
	Hudson Ranch 1	CHAR	49.9	
Unconfi	rmed			
	San Felipe	Esmeralda Energy	20-25	
	Bautista	Esmeralda Energy	49.9	
	Truckhaven I	Iceland America Energy	49	
	Salton Sea	Sierra Geothermal Power	18-38	
	Modoc	Vulcan	20	
	El Centro*		50	

* Pending Action of Volume II of PEIS

Colorado

Installed Capacity: 0 MW

In Development: 10 MW

In addition to having one geothermal project currently in development, DOE awarded \$12.9M to 9 projects in Colorado via ARRA and FY 08 appropriations. No projects receiving DOE funding have yet been identified as being in development in Colorado. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding	
Phase 2					
	Mount Princeton Geo	Mt. Princeton Geothermal	10		

Hawaii

Idaho

Installed Capacity: 35 MW

One geothermal power plant operates on the big island of Hawaii. This plant, Puna Geothermal Venture, delivers an average of 25–30 MW (35 MW name-plate capacity) of electricity to the grid, supplying approximately 20% of the total electricity needs of the Big Island.³

Two additional projects are currently being developed on the island of Maui and the Big Island by Ormat Technologies. DOE awarded \$4.9M in funding to the Maui project via ARRA. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Projects in Development

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 1				
	Maui	Ormat	TBD	ARRA Recipient
Phase 4				
	Puna	Ormat	8	

Installed Capacity: 15.8 MW In Development: 413 – 676 MW

In January 2008 the first geothermal power plant came online in Idaho. Raft River, a binary plant that uses a 300°F resource, has a nameplate production capacity of 15.8 MW. Currently, net electrical power output is approximately 11.5 MW. An expansion to this plant, as well as 11 other projects in the state, is underway.⁴

In addition to these projects in development DOE awarded \$23M to 7 projects in Idaho via ARRA and FY 08 appropriations. Projects in development receiving DOE funding are identified in the following table. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding	
Phase 1					
	Gray Lakes	Eureka Green Systems	100-200		

³ Hawaii Department of Business, Economic Development and Tourism: <u>http://hawaii.gov/dbedt/info/energy/renewable/geothermal</u>

⁴ Idaho Office of Energy Resources: <u>http://www.energy.idaho.gov/</u>

Phase	Project Name	Developer	Capacity (MW)	DOE Funding	
	Thatcher/South Thatcher	Eureka Green Systems	25-50		
	Oakly/North Twin	Eureka Green Systems	25-50		
	Twin Falls/Westside	Eureka Green Systems	25-50		
	Sulfur Springs	Idatherm	25-50		
	Willow Springs	Idatherm	100		
Phase 2					
	China Cap	Idatherm	50-100		
	Preston Project	Idatherm, Shoshone	50		
Phase 3					
	Raft River Expansion	US Geothermal	13-26	ARRA Recipient	
Unconfi	Unconfirmed				
	Newdale	Standard Steam Trust	Unspecified		
	Weiser	Standard Steam Trust	Unspecified		
	Snake River Plain	Standard Steam Trust	Unspecified		

Louisiana

Installed Capacity: 0 MW

In Development: 5.30 MW

Louisiana currently hosts two known developing geothermal projects. One is a planned geothermal hydrocarbon co-production (GHCP) unit at a producing gas field. Another project, which has been awarded \$5M of ARRA funding from the DOE Geothermal Technologies Program, will develop geopressured resources at an oil and gas field. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Projects in Development

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 1				
	Sweetlake Geopressure Project	Louisiana Geothermal	5.25	ARRA Recipient
Phase 4				
	GHCP (Gas)	GCGE*, ElectraTherm	0.05	

*Gulf Coast Green Energy

Mississippi

Installed Capacity: 0 MW

In Development: .05 MW

Mississippi's first developing geothermal project is a planned geothermal hydrocarbon coproduction (GHCP) unit at a producing oil field.

Projects in Development

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 4				
	GHCP (Oil)	GCGE*, ElectraTherm	0.05	
*Gulf Coast Groon Enormy				

*Gulf Coast Green Energy

Nevada Installed Capacity: 433.4 MW In Development: 2120.4 – 3686.4 MW

In 2009 three new power plants were added to Nevada's geothermal power plant portfolio. There are currently 20 operating geothermal power plants in Nevada with a total operating capacity of 433.4 MW. With more developing projects than any other state, it is expected that Nevada's installed capacity will increase significantly in the future.⁵

In addition to harboring 86 developing projects, 20 recipients in Nevada were awarded \$73.6M of funding from Doe via ARRA and FY 08 appropriations. Those projects already in development that were awarded DOE funding are identified in the following table. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Projects in Development

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 1				
	Beowawe	Magma	TBD	
	Columbus Marsh	Magma	TBD	
	Baltazor Hot Springs	Magma	TBD	
	NAS Test Ranges-Fallon	Navy Geothermal Program	10-30	
	Hawthorne Army Depot	Navy Geothermal Program	10-30	
	Black Warrior	Nevada Geothermal	55	ARRA Recipient
	Desert Peak EGS	Ormat	TBD	
	Brady EGS	Ormat	TBD	FY 08 Recipient
	Dixie Meadows	Ormat	TBD	

⁵ Nevada Commission on Mineral Resources Division of Minerals : <u>http://minerals.state.nv.us/</u>

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
	Leach Hot Springs	Ormat	TBD	
	Smith Creek	Ormat	TBD	
	Hawthorne	Oski Energy	25-50	
	Hot Pot Geo	Oski Energy	30-50	ARRA Recipient
	Alligator Geo	Oski Energy	20-40	
	Clayton Valley	Ram Power	120-200	
	Delcer Butte	Ram Power	30	
	Gerlach	Sierra Geothermal Power	7-15	
	Salt Wells	Sierra Geothermal Power	35-76	
	Howard	Sierra Geothermal Power	19-38	
	Sulphur	Sierra Geothermal Power	12-27	
	Wells	Sierra Geothermal Power	15-32	
	Pearl Hot Springs	Sierra Geothermal Power	22-45	
	Dixey Valley	Sierra Geothermal Power	14-31	
	Dixey Valley North	Sierra Geothermal Power	40-90	
	Hawthorne	Sierra Geothermal Power	10-22	
	North Salt Wells	Sierra Geothermal Power	48-101	
	Spencer	Sierra Geothermal Power	9-19	
	Granite Creek	US Geothermal	TBD	
	Lee Allen	Vulcan	48-115	
	New York Canyon	Vulcan	27-54	
	Colado	Vulcan	121-232	ARRA Recipient
Phase 2				
	Lee Hot Springs	Earth Power Resources	32	
	Fireball	Earth Power Resources	32	
	МсСоу	Magma	80	ARRA Recipient
	Panther	Magma	34	
	Desert Queen	Magma	36	
	Dixie Valley	Magma	TBD	
	Granite Springs	Magma	TBD	
	North Valley	Magma	TBD	
	Hawthorne Army Depot SW	Navy Geothermal Program	12-25	
	Gabbs Valley	Ormat	TBD	

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
	Dead Horse	Ormat	TBD	
	Silver State Geo.	Oski Energy	25-50	
	Pyramid Lake	Pyramid Lake Paiute Tribe	TBD	ARRA Recipient
	San Emidio	US Geothermal	20-25	ARRA Recipient
	Gerlach	US Geothermal	15-30	
	Sou Hills	Montara Energy Ventures	TBD	
	Truckee	Raser Technologies	20	
	Trail Canyon	Raser Technologies	20	
	Alum	Sierra Geothermal Power	33-68	ARRA Recipient
	Silver Peak	Sierra Geothermal Power	15-42	ARRA Recipient
	Reese River	Sierra Geothermal Power	26-58	
	Barren Hills	Sierra Geothermal Power	46-99	
	Aurora/Green Hills	Vulcan	132-350	
Phase 3				
	Darrough Ranch	Great American Energy	21	
	NAS, Fallon-Mainside	Navy Geothermal Program	30	
	Blue Mountain	Nevada Geothermal	20-30	
	Pumpernickel	Nevada Geothermal	15-33	
	Carson Lake	Ormat	20	
	McGinness Hills	Ormat	30	
	Tuscarora	Ormat	16-40	
	San Emidio Repower	US Geothermal	8.4	
	Devil's Canyon	Raser Technologies	20	
	Salt Wells	Vulcan	117-245	
	Patua Hot Springs	Vulcan	175-378	
Phase 4				
	NV Co-production Project	ElectraTherm	.03	
	Jersey Valley	Ormat	15	
	Soda Lake Upgrade and Expansion	Magma	12	ARRA Recipient
Unconfir	med			
	Fish Lake Valley	Esmeralda Energy	25	
	Fish Lake II	Esmeralda Energy	25-75	
	Emigrant	Esmeralda Energy	50	

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
	Gabbs Valley	GeoGlobal	5-60	ARRA Recipient
	Humboldt-Toayaibe*	Great American Energy	12	
	Rye Patch	Presco Energy	13	ARRA Recipient
	Marys River	Standard Steam Trust	Unspecified	
	Marys River SW	Standard Steam Trust	Unspecified	
	Edwards Creek	Standard Steam Trust	Unspecified	
	Edwards Creek SW	Standard Steam Trust	Unspecified	
	Coyote Canyon	Terra-Gen	62	
	Dixie Meadows	Terra-Gen	62	
	New York Canyon	Terra-Gen	62	
	Buffalo Valley	Magma	TBD	
	Moping Hills	Magma	TBD	
	Quartz Mountain	Magma	TBD	
	Soda Lake East	Magma	TBD	
	Upsal Hogback	Magma	TBD	

*Pending Action of Volume II of the PEIS

New Mexico

Installed Capacity: 0.24 MW In

In Development: 35 MW

In July 2008, a 0.24 MW pilot installation project went online in New Mexico.⁶ The full project, Lightning Dock, is currently expected to produce 15 MW. In addition to having two geothermal project currently in development, DOE awarded \$11.1M of ARRA and FY 08 funding to 7 recipients in New Mexico to fund EGS R&D and innovative exploration technology projects. No projects receiving DOE funding have yet been identified as being in development in New Mexico. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding	
Phase 2					
	Lightning Dock II	Raser Technologies	20		
Phase 4					
	Lightning Dock	Raser Technologies	15		

⁶ New Mexico Energy, Minerals, and Natural Resources Department: <u>http://www.emnrd.state.nm.us/main/index.htm</u>

Oregon Installed Capacity: 0.28 MW In Development: 342 – 473 MW

In August 2009, a 0.28 MW geothermal unit began producing electricity at the Oregon Institute of Technology's Klamath Falls campus. Currently, 15 known geothermal projects are in development with the potential of providing 473 MW to Oregon's electricity grid.

In addition to currently developing projects, \$40M of ARRA and FY 08 appropriations funding was made available to 7 recipients in Oregon. Those projects already in development that were awarded DOE funding are identified in the following table. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Projects in Development

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
Phase 1	·	·	· · · · · · · · · · · · · · · · · · ·	
	City of Klamath Falls	City of Klamath Falls	1	ARRA Recipient
	Glass Butte, Mahogany	Ormat	TBD	ARRA Recipient
	Glass Butte, Midnight Point	Ormat	TBD	
	Olene Gap	Oski Energy	25-50	
Phase 2				
	Glass Buttes	Magma	TBD	
	Newberry	Newberry Geo Holdings	120	
	Alvord	Raser Technologies	20-80	
	Klamath Falls Plant	Raser Technologies	15	
Phase 3				
	Crump Geyser	Nevada Geothermal	40-80	ARRA Recipient
	Geoheat Center	OIT	1	
	Neal Hot Springs	US Geothermal	20-26	
Unconfir	med			
	Williamette*	Estate of Max Millis	20	
	Williamette*	Estate of Max Millis	30	
	Hood River County*	Portland General Electric	20	
	Hood River County*	Portland General Electric	30	

* Pending Action of Volume II of the PEIS

Texas

Installed Capacity: 0 MW

In Development: 0.4 MW

Texas' first developing geothermal project is a planned geothermal hydrocarbon co-production (GHCP) unit. In addition to this project DOE awarded \$32.4M of ARRA funding to 13 recipients in Texas for research in areas such as EGS R&D and innovative exploration technologies. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Projects in Development

Phase	Project Name	Developer	Capacity (MW)		
Phase 1					
	Liberty County Co-production	Universal GeoPower	0.4	ARRA Recipient	

Utah

Installed Capacity: 42 MW

In Development: 628 – 883 MW

A number of geothermal power plants operate in Utah. Unit 1 of the Blundell power plant has an installed capacity of 23 MW and Unit 2 has a capacity of 9 MW. In April 2009 the low temperature 10 MW Hatch Geothermal Power Plant in Beaver County began delivering power to Anaheim California.

In 2009 \$5.7M of ARRA and FY 08 appropriations funding was made available to 7 recipients in Utah. Currently, no projects identified as already in development were awarded DOE funding. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Phase	Project Name	Developer	Capacity (MW)	DOE Funding		
Phase 1	Phase 1					
	Cove Fort II	Enel NA	20-35			
	Hill Air Force Base	Navy Geothermal Program	5-30			
	Whirlwind Valley	Ormat	TBD			
	Drum Mountain	Ormat	TBD			
	Drum Mountain	Raser Technologies	20-40			
	DeArmand	Raser Technologies	20			
	Wood Ranch	Raser Technologies	20			
	Abraham	Raser Technologies	20			

Phase	Project Name	Developer	Capacity (MW)	DOE Funding
	Pavant	Raser Technologies	20	
	Thermo, Greater	Raser Technologies	100	
	Falstaff	Verdi Energy	40	
Phase 2				
	Cove Fort	Enel NA	20-65	
	Thermo	Magma	20	
	Cove Fort	Oski Energy	50-75	
	Cricket	Raser Technologies	25-50	
	Thermo, Central	Raser Technologies	70-170	
Phase 3				
	Renaissance	Idatherm	100	
	Thermo 3	Raser Technologies	26	
	Thermo 4	Raser Technologies	26	
Phase 4				
	Thermo 2	Raser Technologies	26	
Unconfi	rmed	·	·	·
	Drum Mountains	Standard Steam Trust	Unspecified	

Washington

Installed Capacity: 0 MW

In Development: TBD MW

In 2009 \$4.7M of ARRA and FY 08 appropriations funding was made available to two recipients in Washington. Currently, no projects identified as already in development were awarded DOE funding. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Phase	Project Name	Developer Capacity (MW)		DOE Funding	
Unconfirmed					
	Mt. Baker	Vulcan	TBD		

Wyoming Installed Capacity: 0.25 MW In Development: 0.28 MW

In Augsust 2008, a 0.25 MW GHCP unit was installed at the Department of Energy's Rocky Mountain Oil Test Center (RMOTC) near Casper, Wyoming. The unit was operated for approximately one year when it was shut down for maintenance. The unit has since resumed operation and RMOTC is developing another site for the installation of a 0.28 MW GHCP unit in 2010.

Additionally, in 2009 \$4.5M of ARRA and FY 08 appropriations funding was made available to one recipient in Wyoming. Currently, no projects identified as already in development were awarded DOE funding. For more information on DOE funding of geothermal projects and technologies see section 2 of this report.

Projects in Development

Phase	Project Name	Developer	eloper Capacity (MW)		
Phase 4					
	RMOTC Co-production	RMOTC	.28		

US Project Totals Installed Capacity: 3086 MW In Development: 4584 - 7875 MW

State	Phase 1 to I	Phase 4 Development	TOTAL (with unconfirmed)		
State	Total Projects	In Development (MW)	Total Projects	In Development (MW)	
Alaska	5	35	7	80	
Arizona	0	0	1	2-20	
California	29	1402.8-1765.8	35	1609.7-1997.7	
Colorado	1	10	1	10	
Hawaii	2	8	2	8	
Idaho	9	413-676	12	413-676	
Louisiana	2	5.3	2	5.3	
Mississippi	1	0.05	1	0.05	
Nevada	68	1804.43-3265.43	86	2120.43-3686.43	
New Mexico	2	35	2	35	
Oregon	11	242-373	15	342-473	
Texas	1	0.4	1	0.4	
Utah	20	628-883	21	628-883	

Figure 3: Projects in Development Totals by State

Wyoming	1	0.28	1	0.28
Total	152	4584.26 -7057.26	188	5254.21 - 7875.16

Source: GEA

1.3 Project in Development Summary

Geothermal project in development information recorded in this report indicates that geothermal developers are actively developing known geothermal resources as well as seeking new resources for development. The number of projects in development has continued to increase at a steady rate since early 2006. Since March 2009 identified confirmed projects in development rose from 121 to 152 for an increase of 26 percent.

Source: GEA

When unconfirmed projects are accounted for the current geothermal resource in development count reaches 188 projects.

The progress of projects identified in the US Geothermal Industry Update is routinely tracked in a four-phase development system(explained in section 1.2). While there has been a general increase in the total number of projects in development over the past year, developers' reports

indicate that projects are generally progressing from early to more advanced stages of development.

Figure 5: Developing Projects by State and Phase

Source: GEA

The precise number of projects and their standing in respect to phase of development is summarized on a state-by-state basis in Figure 6.

State	U	Unconfirmed Phase I			Phase II Pha		Phase III		Phase IV	
	#	MW	#	MW	#	MW	#	MW	#	MW
Alaska	2	45	3	20	2	15	0	0	0	0
Arizona	1	2-20	0	0	0	0	0	0	0	0
California	6	206.9-231.9	9	591.9–709.9	11	437–602	7	289–369	2	84.9
Colorado	0	0	0	0	1	10	0	0	0	0
Hawaii	0	0	1	TBD	0	0	0	0	1	8
Idaho	3	Unspecified	6	300–500	2	100-150	1	13-26	0	0
Louisiana	0	0	1	5.25	0	0	0	0	1	0.05
Mississippi	0	0	0	0	0	0	0	0	1	0.05
Nevada	18	316–421	31	737–1382	23	578–1001	11	472.4–855.4	3	27.03
New Mexico	0	0	0	0	1	20	0	0	1	15
Oregon	4	100	4	26–51	4	155–215	3	61–107	0	0
Texas	0	0	1	0.4	0	0	0	0	0	0
Utah	1	Unspecified	11	265–290	5	185-380	3	152	1	26
Washington	1	Unspecified	0	0	0	0	0	0	0	0
Wyoming	0	0	0	0	0	0	0	0	1	0.28
				1935.6-						
Totals	36	669.9-817.9	67	2993.6	49	1500-2393	25	987.4-1509.4	11	161.31
Source: GEA										

Figure 6: Developing Projects by Phase

While obstacles to the development of geothermal resources remain, a growing demand for geothermal energy fueled by state renewable portfolio standards as well as concerns regarding climate change and energy security has resulted in the increased development of US geothermal resources.

2. Federal Programs and Funding of Emerging Technologies

2.1 DOE Geothermal Technologies Program Funding and Projects

The Department of Energy (DOE) Geothermal Technologies Program (GTP) works with industry, academia, research facilities, and national laboratories to advance commercial scale applications of geothermal technologies. The GTP provides funding to institutions in these sectors to assist research, development, and demonstration efforts in the geothermal industry. Funding is primarily provided via funding opportunity announcements (FOA's).

In addition to funding provided to the geothermal industry through annual appropriations, the American Recovery and Reinvestment Act (ARRA) of 2009 provided up to \$338M in new funding for implementation by the GTP over a wide range of research, development, demonstration, and deployment activities. Funding is distributed among six categories, including Innovative Exploration and Drilling Projects (up to \$98.1M, 24 projects), Coproduced, Geopressured, and Low Temperature Projects (up to \$20.7M, 11 projects), Enhanced Geothermal System Demonstrations (up to \$51.4M, 3 projects), Enhanced Geothermal System Demonstrations (up to \$51.4M, 3 projects), Enhanced Geothermal Data Development, Collection, and Maintenance (up to \$24.6M, 3 projects) and Ground Source Heat Pump Demonstrations (up to 61.9M, 37 projects). It is planned that 123 projects in 39 states will receive DOE ARRA funding with recipients ranging from private industry, academic institutions and tribal entities to local governments, and DOE National Laboratories. According to the DOE, the initial grant of \$338M will be supplemented by an additional \$353M in private and non-Federal cost-share funds.⁷

⁷ US DOE: Geothermal Technologies Program. <u>http://www.energy.gov/news2009/8233.htm</u> (October 2009).

Currently, up to \$354.7 M of federal funding from ARRA and DOE FY 08 annual appropriations has been awarded to 135 geothermal research, development, and demonstration projects in 25 states. Of this total, \$311.1M has been allocated to the geothermal industry through ARRA and \$43.6M has been allocated through FY 08 annual appropriations.

Figure 7: DOE and Industry Funding under ARRA and FY 08 Appropriations

When cost sharing among the awardees is accounted for, the amount of dollars allocated to geothermal research and development over the last year increases to approximately \$642.8M.

A total of 77 projects in states with a relatively well established geothermal industry base (see Figure 8) received approximately \$236.5M of federal funding via ARRA and FY 08 appropriations. The industry cost share, approximately \$245.7M, provided by funding recipients in these states will bring a total of \$482.2M to fund research and development activities in these regions.

Source: GEA, DOE

Figure 8: Funding and Cost Share in States Producing Geothermal Electricity

Source: GEA, DOE

Note: Funding provided to the US Geological Survey has not been included in state DOE and Industry Share totals. Funding values by state have been rounded to the million place holder.

While many of the recipients of federal funding are operating in states where the geothermal industry is established, 57 projects in states not traditionally known for harboring a geothermal industry (see Figure 9) were awarded approximately \$114.5M of federal funding. With an industry cost share total of \$42.4M by awardees, a total of \$156.9M will fund geothermal research and development projects in states where geothermal technology deployment present new opportunities in geothermal technology development and deployment.

Figure 9: Federal Funding and Cost Share in States with Nascent Geothermal Industries

Note: Funding provided to the US Geological Survey has not been included in state DOE and Industry Share totals. Funding values by state have been rounded to the million place holder.

The amount of Federal funding provided to the geothermal industry through ARRA is unprecedented and provides substantial incentives to encourage the continued development of domestic geothermal resources. The DOE GTP ARRA funding awards will not only facilitate new job growth but also the development and deployment of new technology as well as growth in new sectors of the geothermal industry.

2.2 Federal Funding of Developing Geothermal Technologies

Funding provided by the GTP through FY 08 Appropriations and ARRA is channeled to different areas of research and development within the geothermal industry. A wide range of technologies and applications are covered under new funding and projects identified fall under one of the following areas: EGS demonstration projects, new application projects⁸, innovative exploration technologies, EGS R&D or analysis, the national geothermal data system (NGDS), and geothermal heat pumps. While each of these areas present unique opportunities for the

Source: GEA, DOE

⁸ New application projects include geothermal electricity generation from geothermal hydrocarbon co-production, geopressured, and low-temperature resources. DOE, EERE. *Geothermal Technologies Program Recovery Act Funding Opportunities.* June, 2009.

further development of the geothermal industry, certain focuses stand to impact the near-term development of geothermal resources.

2.2.1 Enhanced Geothermal Systems Projects

Enhanced Geothermal Systems (EGS) commonly refers to any resource that requires artificial stimulation and includes resources that have to be fully engineered, or ones that produce hydrothermal fluid, but sub-commercially. In certain respects EGS is still a young and not fully proven technology. However, GTP recently provided \$73.5M of federal funding to EGS demonstration projects in 5 different states. In addition to funding provided by DOE the total industry cost share for these projects is \$99.1M.

Project Name	Awardee	State	DOE Funding	Cost Share	In Development
Naknek Geo Project	Naknek Electric	АК	\$12,376,568	\$18,970,500	Unconfirmed
Desert Peak EGS	Ormat	NV	\$4,138,003	\$1,485,529	Phase 1
NW Geysers EGS	Geysers Power	CA	\$5,697,700	\$6,120,050	
Raft River Expansion	University of Utah	ID	\$8,928,999	\$3,372,789	Phase 3
New York Canyon	TGP Development	NV	\$14,006,000	\$5,668,667	Unconfirmed
Brady EGS	Ormat	NV	\$3,374,430	\$2,735,970	Phase 1
Newberry EGS	AltaRock	OR	\$24,999,430	\$60,758,496	
Total*			\$73,521,130	\$99,112,001	

Figure 10: EGS Demonstration Projects

Source: GEA, DOE

*Under Negotiation: Numbers Not Final as of April 2010

As indicated in Figure 10, some of these projects have been previously tracked as "projects in development" in section 1.2 of this and previous GEA US Geothermal Industry Updates. As the geothermal industry's knowledge of EGS technology expands from experience gained via federally supported projects, EGS technologies are expected to significantly increase extension and production from existing fields. As technology advances, EGS may also enable the eventual utilization of geothermal energy in previously implausible locations.

2.2.2 Innovative Exploration and Drilling Projects

The drilling of geothermal exploration and production wells constitutes one of the most expensive and risk-intensive aspects of the development of a geothermal resource. It is estimated that the construction of a geothermal steam field can constitute nearly half of the total cost of developing a geothermal resource. Industry and government are continually

developing technologies designed to improve the success rate of drilling geothermal exploration and production wells. The GTP recently provided \$25.8M of funding to 6 geothermal drilling projects in 3 states. The total industry cost share for these 6 projects amounts to \$30.7M.

Project Name	Awardee	State	DOE Funding	Cost Share	In Development
МсСоу	Magma	NV	\$5,000,000	\$6,126,664	Phase 2
El Paso Co. Project	El Paso County	тх	\$5,000,000	\$4,812,500	
Crump Geyser	Nevada Geothermal	OR	\$1,764,272	\$1,764,272	
Silver Peak	Sierra Geothermal	NV	\$5,000,000	\$7,356,546	Phase 2
Alum	Sierra Geothermal	NV	\$5,000,000	\$7,356,546	Phase 2
Gabbs Valley	GeoGlobal	NV	\$4,040,375	\$3,302,766	
Total*			\$25,804,647	\$30,719,294	

Figure 11: Validation of Innovative Drilling Projects

Source: GEA, DOE

*Under Negotiation: Numbers Not Final as of April 2010

Some projects receiving funding for geothermal drilling projects have previously been tracked as projects in development in section 1.2 of this and previous US Geothermal Industry Updates. Federal funding of these and additional projects will help to improve geothermal drilling technologies and bring additional geothermal electricity to the grid.

2.2.3 Geothermal Hydrocarbon Co-production (GHCP) Projects

Usable geothermal fluids are often found in oil and gas production fields as well as certain mining operations. Using low temperature binary technology the heat in "produced fluids" from oil and gas wells can be utilized to produce geothermal electricity. The Southern Methodist University Geothermal Energy Program has estimated that geothermal hydrocarbon co-production (GHCP) operations in the Texas Gulf Plains have the capability of providing 1000 – 5000 MW of power.⁹

In addition to GHCP, geopressured resources represent another opportunity for geothermal development. Geopressured resources exist where deposits of natural gas form under very high pressure. The mechanical energy from pressurized natural gas, the natural gas itself, and the heat from the co-produced geothermal brine can be utilized to provide electricity as well as two separate revenue streams. While located in a number of states, the most significant resources are said to be located in the northern Gulf of Mexico, particularly Texas and Louisiana (offshore and onshore). The USGS has estimated that in addition to thousands of megawatts of

⁹ McKenna, et al, SMU, *Oil and Gas Journal*, (September 5, 2005).

geothermal energy, these resources hold as much as 1,000 TCF of potentially recoverable gas. Also, it is estimated that in Texas alone, there exists a total geopressured resource of 5,100 EJ.¹⁰ New GHCP and geopressured geothermal projects are beginning to be developed throughout the Great Plains and southern United States. THE DOE recently provided \$8.2M of ARRA funding to two GHCP projects and one geopressured project in three different states.

	Figure 12:	Geothermal	Hydrocarbon	Co-production	and Geopressu	red Projects
--	------------	------------	-------------	----------------------	---------------	--------------

Project Name	Awardee	State	DOE Funding	Cost Share	In Development
North Dakota GHCP	University of ND	ND	\$1,733,961	\$1,734,961	
Liberty County GHCP	Universal Geopower	тх	\$1,499,283	\$2,050,005	Phase 1
Sweet Lake	Louisiana Tank	LA	\$5,000,000	\$10,202,879	
Total*	·		\$8,233,244	\$13,987,845	

Source: GEA, DOE

*Under Negotiation: Numbers Not Final as of April 2010

2.2.4 Other Federal Awardees and Technologies

While EGS, drilling, GHCP and geopressured technologies all represent sectors of geothermal development with significant potential for high impact growth, federal funding made available through ARRA and FY 08 appropriations addressed other technological and development needs in the geothermal industry. EGS R&D or analysis, innovative exploration technologies, the development of a national geothermal data system, and geothermal heat pumps also received federal funding. Certain projects that have already been identified as being in development in previous updates (in addition to those identified in sections 2.2.1, 2.2.2, and 2.2.3 of this report) have received funding awards through ARRA and/or FY 08 appropriations.

Project Name	Awardee	State	DOE Funding	Cost Share	In Development
Pilgrim Hot Springs	University of AK	AK	\$4,616,879	\$1,538,960	Phase 1
New River	Ram Power	CA	\$5,000,000	\$9,339,420	Phase 1
Wister	Ormat	CA	\$4,475,015	\$1,507,980	Phase 2
Maui	Ormat	н	\$4,911,330	\$5,595,464	Phase 1
Hot Pot Geo	Oski Energy	NV	\$4,214,086	\$3,985,570	Phase 1
Colado	Vulcan	NV	\$3,825,973	\$4,489,760	Phase 1
Pyramid Lake	Pyramid Pauite Tribe	NV	\$4,845,534	\$0	Phase 2

Figure 13: Other Geothermal MW in Development Receiving Funding

¹⁰ Texas State Energy Conservation Office, *Texas Renewable Energy Resource Assessment*, (December 2008)

Project Name	Awardee	State	DOE Funding	Cost Share	In Development
San Emidio	US Geothermal	NV	\$3,772,560	\$3,451,878	Phase 2
Soda Lake Upgrade	Magma	NV	\$5,000,000	\$9,571,873	Phase 4
City of Klamath Falls	City of Klamath Falls	OR	\$816,100	\$816,100	Phase 1
Total*			\$41,477,477	\$40,297,005	

Source: GEA, DOE

*Under Negotiation: Numbers Not Final as of April 2010

Note that these projects have already been listed in section 1.2, *Geothermal Capacity in Development*, of this report. Therefore, the MW values of projects in development receiving DOE funding are not to be thought of as additional to the 7057.26 MW of geothermal capacity in development already identified. **Values for MW in development receiving DOE funding are derived from industry estimates used in section 1.2 of this report and are not provided by DOE.**

While the recipients of federal funding via ARRA were announced in October of 2009, the process by which awardees actually receive money is ongoing. Currently, awardees are in the process of performing due diligence on their proposed projects. Once the processes of final project negotiations are completed awardees will receive funding and progress on the ground will commence on a larger scale.

2.3 Bureau of Land Management Lease Sales

The U.S. Bureau of Land Management (BLM) held geothermal lease sales in February 2010 which resulted in the sale of 70,913 acres of land and bid revenue of approximately \$233,462. In the state of Idaho 4 out of 10 lease parcels offered were sold. In the state of Utah a total of 17 lease parcels offered by the BLM were purchased.

Previously, The Energy and Policy Act of 2005 distributed 50 percent of lease sale revenue to the state, 25 percent to the county in which a lease resides, and the remaining 25 percent to the BLM for the processing of geothermal leases and geothermal use authorizations. However, the recently approved fiscal year 2010 Department of the Interior Appropriations Bill, HR 2996, stripped counties of geothermal lease sale revenue. Currently, 50 percent of revenues from geothermal lease sales are allocated to the state within which the geothermal leases reside. The other 50 percent is allocated to the federal government.¹¹

Figure 14: Utah February 2010 BLM Lease Sale Results

Source: GEA, BLM

A breakdown of the lease sale by state, total acreage sold, and total bonus bid dollar amount can be found in the table below.

¹¹ US Department of the Interior. <u>http://www.govtrack.us/congress/billtext.xpd?bill=h111-2996</u> (October 2009).

Figure 15: February 2010 BLM Geothermal Lease Sale State and Federal Revenue

Source: BLM, GEA

BLM has also published an amended plan for geothermal leasing in the Western states. The plan allocates approximately 111 million acres of BLM lands and 79 million acres of National Forest System lands open for leasing. In addition to this, the plan allows pre-existing studies on specific lands to be used along with best management practices. The change will reduce the processing time of future geothermal power development. For more information on BLM's plan, please visit http://www.blm.gov/wo/st/en/info/newsroom/2008/december/NR_12_18_2008.html

2.4 Geothermal Development on Tribal Lands

The growing interest in the development of geothermal energy resources has also led to projects being developed on tribal lands. Many Native American tribes are now considering the use of geothermal to meet their energy needs as well as to provide jobs to local residents. The federal government has also recognized the value of geothermal energy development on tribal lands. Recently the Office of Indian Energy and Economic Development awarded \$3.7M to various tribes for the development of localized renewable energy resources.

Figure 16: Federal Funding to Tribal Lands

Source: GEA

Of the \$3.7M awarded to the various tribes \$2.25M went to tribes planning to develop their geothermal resources, \$0.85M went to biomass projects, and \$0.61M went to hydroelectric projects. Of the tribes receiving awards to develop geothermal resources the Pyramid Lake Paiute tribe received the largest award of \$.75M. As indicated in section 1.2 of this report, the Pyramid Lake Paiute Tribe is in the early stages of developing its geothermal resources and has also received ARRA funding for the exploration of its geothermal resources.¹²

¹² US Department of the Interior. <u>http://www.doi.gov/news/pressreleases/2010_03_11_releaseA.cfm</u> (March 2010).

Renewed focus on the development of geothermal and other renewable energy resources on tribal lands by tribes is indicative of their recognition of geothermal energy's value as a provider of local jobs, revenue, and clean, cost-competitive electricity.

Prepared by Dan Jennejohn, Geothermal Energy Association April 2010

Geothermal Energy Association, 209 Pennsylvania Ave SE, Washington, DC www.geo-energy.org